Control of Ice Propagation by Using Polyelectrolyte Multilayer Coatings.

نویسندگان

  • Yuankai Jin
  • Zhiyuan He
  • Qian Guo
  • Jianjun Wang
چکیده

Ice propagation is of great importance to the accumulation of ice/frost on solid surfaces. However, no investigation has been reported on the tuning of ice propagation through a simple coating process. Herein, we study the ice propagation behavior on polyelectrolyte multilayer (PEM) surfaces coated with the layer-by-layer (LBL) deposition approach. We discover that ice propagation is strongly dependent on the amount of water in the outermost layer of PEMs, that is, the ice propagation rate increases with the amount of water in the outermost layer. The ice propagation rate can be tuned by up to three orders of magnitude by changing the polyelectrolyte pairs, counterions of the outermost polymer layer, or the salt concentration during the preparation of PEMs. Because the simple, versatile, and inexpensive LBL deposition approach is generally applicable to almost all available surfaces, the PEM coatings can tune ice propagation on a wide range of substrates.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Combined effect of spin speed and ionic strength on polyelectrolyte spin assembly.

Polyelectrolyte spin assembly (PSA) of multilayers is a sequential process featuring adsorption of oppositely charged polyelectrolytes from dilute solutions undergoing spin-coating flow. Here, we report on the dependence of PSA multilayer buildup of poly(sodium 4-styrenesulfonate) and poly(allylamine hydrochloride) on solution ionic strength and spin speed. We observed that at a given spin spee...

متن کامل

A versatile approach to selective and inexpensive copper patterns using polyelectrolyte multilayer coatings

Versatile, highly selective, and inexpensive metal patterning techniques on various substrates are demanded for current research in microelectronic device fabrications. We present a new process for creating highly selective and cost-effective copper patterns that can be plated on virtually any substrate including plastics by combining polyelectrolyte multilayer (PEM) coatings, microcontact prin...

متن کامل

Fabrication and Characterization of Chitosan/Alginate Multilayer Composite Membrane Supported by a Porous Poly (Acrylonitrile) Substrate for Pervaporation Dehydration of Alcohol

Chitosan (CS) and alginate (Alg) are complementary in their membrane performance, but the combination of them is normally difcult to use due to their different solubilities. Layer-by-Layer deposition appears to be an effective method for improving the separation efciency of a composite membrane. In this work, the polyelectrolyte multilayer composite membranes (PEMCMs) wer...

متن کامل

Temperature responsive behavior of polymer brush/polyelectrolyte multilayer composites.

The complex interaction of polyelectrolyte multilayers (PEMs) physisorbed onto end-grafted polymer brushes with focus on the temperature-responsive behavior of the system is addressed in this work. The investigated brush/multilayer composite consists of a poly(styrene sulfonate)/poly(diallyldimethylammonium chloride) (PSS/PDADMAC) multilayer deposited onto the poly(N-isopropylacrylamide-b-dimet...

متن کامل

Osteoconductive protamine-based polyelectrolyte multilayer functionalized surfaces.

The integration of orthopedic implants with host bone presents a major challenge in joint arthroplasty, spinal fusion and tumor reconstruction. The cellular microenvironment can be programmed via implant surface functionalization allowing direct modulation of osteoblast adhesion, proliferation, and differentiation at the implant--bone interface. The development of layer-by-layer assembled polye...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Angewandte Chemie

دوره 56 38  شماره 

صفحات  -

تاریخ انتشار 2017